中国在职研究生网 >> 论文中心 >>

浅议数学教学中发散思维的培养

2010-11-16 11:26       作者:邵娟    http://www.zzyjs.com

摘要:思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既能提高学生的发散思维能力,又能提高教学质量。如何培养学生的发散思维能力,找到培养和发展学生的能力的有效途径,在数学教学中愈来愈显得重要。

关键词:数学教学  发散思维  能力  培养

1  前言

发散思维是从同一来源材料中探求不同答案的思维过程,思维方向分散于不同方面,它表现为思维开阔、富于联想,善于分解组合,引伸推导,敢于创新。培养这种思维能力,有利于提高学生学习的主动性、积极性、求异性、创新性,因此在教学中,要加强对学生发散思维的培养。

2  培养发散思维能力的途径

2.1  给学生提供发散思维的机会。

发散思维是从不同方向来考虑解决问题的多种可能性思维过程,在教学中,有意识地让学生探讨问题解决的各种可能的途径,会有利于发散性思维的培养。例如:证明一条线段是另一条线段的2倍时,有如下一些途径:

(1)作短线段的二倍线段,证明二倍线段等于长线段;

(2)取长线段的一半,证明一半的线段等于短线段;

(3)如果长线段是某直角三角形的斜边是,取斜边上的中线,证明斜边的中线等于短线段;

(4)有四个以上的中点条件时,考虑能否通过三角形中位线定理来证明等等,当然对这些途径,都应通过具体的例子来寻找。

2.2  建立新型的师生关系,创设宽松氛围,竞争合作的班风,营造思维活动的环境。

首先,要使学生积极主动地探求知识,发挥创造性,必须克服那些课堂上老师是主角,少数学生是配角,大多数学生是观众、听众的旧的教学模式。因为这种课堂教学往往过多地发挥教师的主导作用,限制了学生思维开发。教师应训练学生创新能力为目的,发散学生思维为根本,保留学生自己的空间,尊重学生的爱好、个性和人格,以平等、宽容、友善的态度对待学生,使学生有在教育教学中能够与教师一起参与教和学中,真正做学习的主人,形成一种宽松和谐的教育环境。只有在这种氛围中,学生才能充分发挥自己的聪明才智和创造想象的能力。其次,班集体能集思广益,有利于学生之间的多向交流,在班集体中,取长补短,课堂教学中有意识地搞好合作教学,使教师、学生的角色处于随时互换的动态变化中,设计集体讨论,差缺互补,分组操作等内容,锻炼学生的合作能力。特别是一些不易解决的问题,让学生在班集体中开展讨论,这是营造新环境发扬教学民主环境在班集体中的表现。学生在轻松环境下,畅所欲言,各抒己见,学生敢于发表独立的见解,或修正他人的想法,将几个想法组合为一个最佳的想法,从而在学习过程中,培养学生发散思维能力。

2.3  激发学生的求知欲,训练思维的积极性,培养学生的发散思维能力。

培养思维的积极性是培养发散思维的极其重要的基础。在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在小学教学中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,小学生能较顺畅地完成了这样练习。而后,教师又出示5+5+5+5+4,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了5+5+5+5+4=5×5-1=5×4+4=4×6……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“问题性引入”、“趣味性引入”等等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我们让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

2.4  转换角度思考,注重对问题进行引伸和推进,训练思维的求异性,培养学生的发散思维能力。

发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度即从新的思维角度去思考问题,以求得问题的解决。从认知心理学的角度来看,中小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展中小学生的抽象思维能力,必须十分注意培养思维求异性,并加以引伸和推进,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如333可以连续减多少个9?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作333里包含几个9,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练,对问题进行适当的引伸和推进。在教师的引导、示范的影响下,让学生养成对问题加以引伸和推进的良好习惯,其发散思维必能得到很好的发展。

查看更多相关论文教育理论学论文  教育学论文  
上一页 1 2 下一页 

在职读研实用信息
版权声明
    凡本站稿件类型为“原创”的所有文字、图片和音视频等稿件,均为启文教育网版权所有,未经本站协议授权,任何媒体、网站及个人均不得转载或以其它方式发表,违者必究。如需转载,请注明出处。
相关资讯文章
热点推荐简章

交流吧热帖 

推荐阅读

网友阅读

在职研究生热门专业

  • 专业名称详情

网站简介 | 免责声明 | 广告与合作 | 联系我们 | 招聘信息

常年法律顾问  华泰律师事务  毛亚斌律师

京ICP备05038589号